УФ диагностика или ИК: что лучше для диагностики изоляторов?

УФ диагностика или ИК: что лучше для диагностики изоляторов?

Когда-то, для того, чтобы люди додумались закреплять очки за уши, понадобилось целых сто лет их использования. В современном мире все происходит гораздо быстрее. За какие-то двадцать лет появилась новая методика обнаружения дефектов в электрических сетях и установках – УФ диагностика и ИК диагностика. Сопоставим некоторые факты и немного проследим за эволюцией методов, которые продолжают совершенствоваться.

Всё началось с изучения статистики поиска дефектов изоляторов на контактных сетях железных дорог. Техническое состояние опорно-стержневой и подвесной изоляции определяет безаварийность и длительность срока службы электрооборудования и методика его определения особенно актуальна и востребована. Это подтверждается каждодневным опытом и статистическими данными, поступающими с предприятий и объектов железнодорожной сети.

На сегодняшний день разработано множество видов технической диагностики изоляторов. Их можно разделить на контактные и бесконтактные. Чаще применяется контактный способ, при котором измеряется напряжение на изоляторах с помощью измерительной штанги. Среди бесконтактных способов широко распространены тепловые и акустические методы. В последние годы получили распространение более современные способы - регистрация ультрафиолетового (УФ) или инфракрасного (ИК) излучения. Каждый из этих способов позволяет определять местонахождение дефекта после его визуализации в этих диапазонах. При этом измеряется интенсивность УФ или ИК излучения количественно и определяется степень опасности обнаруженного дефекта.

Часто применяемый тепловой метод, фактически обнаруживающий инфракрасное излучение, как метод неразрушающего контроля, был включен в рабочую документацию, применён на практике и рекомендован для контроля изоляторов еще в 1997 году. Для этого использовались тепловизоры. Наиболее популярным был электронно-оптический дефектоскоп «Филин».

Тепловизор и УФ-дефектоскоп: расположение дефекта определяется значительно точнее

Тепловизор и УФ-дефектоскоп: расположение дефекта определяется значительно точнее

Проверка эффективности УФ-дефектоскопов в ОАО «РЖД»

Следует отметить, что достоверность диагностики изоляторов при помощи УФ-дефектоскопов в отдельности подтверждена опытом их применения в ОАО «РЖД». При этом, достоверность результатов достигала 96%, но следует напомнить, что это только достоверность, а не чувствительность метода. УФ-камера устанавливалась на «вагоне испытания контактной сети». Кроме этого, для определения эффективности метода производилась съемка в этом же диапазоне камерой, находящейся в руках оператора, перемещающегося в пешем порядке. Результаты, полученные при использовании ультрафиолетовой системы, сравнивались с самыми старыми, контактными методами, получаемыми при помощи измерительной штанги. Результаты сравнения представлены на рисунке:

Число обнаруживаемых дефектов почти одинаковое, а затраты отличаются на порядки!

Число обнаруживаемых дефектов почти одинаковое, а затраты отличаются на порядки!

Диаграмма явно свидетельствует о том, что контактные методы не имеют преимуществ перед УФ диагностикой, как при обходе, так и при объезде на вагоне испытаний. Важно то, что затраты времени, труда и средств при контактном методе, разумеется, значительно выше.

На большинстве электрифицированных железных дорог России с напряжением контактной сети 27,5 кВ переменного тока в настоящее время используются вагоны-лаборатории контактной сети с ультрафиолетовыми камерами и тепловизорами, предназначенными для оценки теплового режима контактных соединений. При этом ИК исследования проводились без учета внешних условий и не в сопоставлении с результатами УФ исследований и вскоре стали уходить на второй план, уступая место ультрафиолетовой диагностике. В результате применения УФ- диагностики число «перекрытий» изоляции снизилось в 2-2,5 раза. Естественно, что количество обнаруженных дефектов неуклонно снижалось со временем, так как дефектная изоляция заменялась на новую.

Что подсказали лабораторные исследования камер для ИК и УФ диагностики

Позднее, после лабораторных экспериментов, выяснилось, что развитие аварии в УФ-диапазоне можно зафиксировать гораздо раньше, более точно и надежнее, чем в инфракрасном. Тепловой контроль (ИК-метод) позволяет выявить дефекты в изоляторах, но при строгом учете внешних условий, в которых проводится диагностика. К примеру, в теплую, влажную погоду тепловизор не выявляет дефекты изоляторов, так как при высокой влажности появляются условия для появления повышенных токов утечки, которые изменяют тепловое состояние изоляторов, которое и фиксируется приборами. Сама же изоляция может оставаться в хорошем состоянии.

Приборы «CoroCAM» и «MultiCAM» внесены в реестр средств измерений РФ

Приборы «CoroCAM» и «MultiCAM» внесены в реестр средств измерений РФ

Пример отображения объекта контроля в УФ, ИК и УФ+ИК спектрах

Пример отображения объекта контроля в УФ, ИК и УФ+ИК спектрах.

Данные, полученные в результате совместного применения ИК и УФ дефектоскопов, подтверждают высокую эффективность такого метода для контроля не только изоляторов контактной сети, но и другого электрооборудования.

Заключение

В развитии ультрафиолетового метода обнаружения дефектов, несомненно, наблюдается прогресс. К примеру, успешно решается вопрос подготовки специалистов по УФ-диагностике. К настоящему времени созданы органы по аккредитации, позволяющие производить сертификацию персонала. В настоящее время работают учебные онлайн-курсы для повышения квалификации по этому виду МНК. К настоящему времени стала применяться часть УФ-диапазона (от 240 до 280 нм), на котором излучение Солнца имеет малую интенсивность и не создаёт помех. Успешно решаются проблемы нормативного обеспечения метода.

Только небольшой пик интенсивности излучения коронного разряда не совпадает по длине волны с УФ излучением Солнца

Только небольшой пик интенсивности излучения коронного разряда не совпадает по длине волны с УФ излучением Солнца

Анализ ультрафиолетового излучения даёт возможность получения наиболее достоверной информации, позволяющей с высокой точностью обнаруживать расположение дефектов и классифицировать их.

Подберем для вас УФ/ИК камеру, а также дадим специальную скидку

- Email
- Confirm

* - Обязательное для заполнения
Поделитесь этой страницей с друзьями и коллегами

 

Последние новости

29.06.2022

В компанию «СвязьКомплект» поступил запрос от компании “Россети Сибирь” на оснащение воздушных линий электропередач (ЛЭП) 10 и 110 кВ индикаторами короткого замыкания.

06.06.2022

Новые тепловизионные камеры промышленного применения китайского производителя Jiahehengde доступны в России! Оборудование сертифицировано и доступно под заказ!  

25.05.2022

Поиск мест повреждений кабельных линий распределительных сетей низкого напряжения является серьезной проблемой, а с учетом их распространенности, это может служить причиной значительного недоотпуска электроэнергии потребителям.

12.05.2022

Профессиональное высоковольтное оборудование b2 electronic GmbH (Австрия), предназначенное для испытания и диагностики высоковольтных кабельных линий доступно для заказа! Цены снижены и зафиксированы до конца года. Сроки поставки основной номенклатуры – около 2 недель.

12.04.2022

Нормальная эксплуатация силовых трансформаторов предполагает своевременное проведение диагностики и ремонтов. На практике используются различные методы диагностики, определяющие состояние тех или иных узлов и систем трансформатора. В ряду применяемых методов диагностики измерение температуры является самым быстрым. Измеряют температуру поверхности открытых конструктивных элементов, температуру охлаждающего масла и температуру функциональных узлов внутри трансформатора.

07.04.2022

Одним из ключевых вопросов, влияющих на надежность распределительной сети, является вопрос поиска поврежденных линий. Традиционные методы поиска места неисправности могут полагаться только на внешний осмотр во время патрулирования линии. Это сопряжено с необходимостью иметь в штате персонал, ответственный за поиск неисправностей, что приводит к дополнительным затратам человеческих, материальных и финансовых ресурсов. Поиск места повреждения занимает время и особенно осложнен в труднодоступных местах и в условиях неблагоприятных погодных условий.

23.03.2022

В данной статье описаны этапы тестирования кабельной линии на наличие частичного разряда под рабочим напряжением, в режиме онлайн. При построении ветровых электростанции (ВЭС) широко используется так называемый блочный (модульный) принцип построения главных схем, когда три или несколько генераторов соединяются с трансформатором и образуют энергоблок, как показано на схеме ниже.

14.03.2022

Защита трансформаторного масла от насыщения влагой имеет решающее значение для надежной работы трансформатора. Увлажнение масла приводит к снижению его диэлектрической прочности, а повышенное насыщение масла кислородом воздуха приводит к ускоренному окислению меди. Эти два фактора способствуют снижению ресурса изоляции трансформатора и в конечном счете приведет к пробою изоляции обмоток и аварии трансформатора. Поэтому важно, чтобы...

24.02.2022

С каждым годом неуклонно растет потребление электроэнергии. Увеличивается нагрузка на всю систему электроэнергетики, в том числе и на кабельные линии передачи. Вопрос повышения надёжности кабельных систем не теряет своей актуальности.

22.02.2022

Острая необходимость в устройствах индикации повреждений на воздушных линиях вызывает рост предложения в этом сегменте рынка. Применение таких новейших систем защиты, как нейтрализаторы замыкания на землю (GFN) не снижают потребности в индикаторах короткого замыкания, так как место повреждения, в любом случае, необходимо определить. Именно по этому внедрение ИКЗ является очень актуальным направлением.

Заказать звонок

- Email
- Confirm
Имя *
Номер телефона *
E-mail *
Комментарий *
Согласие на отправку персональных данных *


* - Обязательное для заполнения