Измерение сопротивления заземления классическими трех- и четырехпроводным методами

Когда идёт речь о вопросах безопасности людей предпочтительнее использовать методики измерений, хорошо зарекомендовавшие себя на протяжении десятилетий. Применительно к заземлению таким методом является измерение сопротивления с помощью комбинации амперметра и вольтметра (рекомендуемый ГОСТ Р 50571.16-2007). Иногда такой метод называют «трёхпроводным» (или «трёхзажимным»). Существует и более точная его модификация, именуемая «четырёхпроводным» («четырёхзажимным») методом. Как правило, оба метода могут быть реализованы в одном измерительном приборе.

Измерение сопротивления заземления по методу амперметра-вольтметра

Измерение сопротивления заземления по методу амперметра-вольтметра

При проведении измерений данным методом заземление отключается от электроустановки. На расстоянии не менее 20 м от исследуемого заземления в землю вкапывается потенциальный штырь. На расстоянии не менее 40 м от исследуемого заземления вкапывают токовый штырь. Штыри и заземление должны быть расположены на одной линии. Конкретные рекомендации по расстояниям между заземлением и штырями могут отличаться в зависимости от типа заземления и модели применяемой измерительной аппаратуры. Как правило, такие рекомендации указываются в инструкции к измерительной установке.

На контур, образованный исследуемым заземлением, токовым штырем и амперметром, через трансформатор передается переменный ток. В современных приборах это обычно не синусоида с частотой 50 Гц, а меандр с частотой порядка 100 — 200 Гц. Тем самым проверяется работоспособность заземления на гармониках высшего порядка и удается частично сократить влияние помех. При помощи вольтметра измеряется напряжение между заземлением и потенциальным штырем. Далее на основе закона Ома вычисляется сопротивление заземления по формуле:

R = U/I,

где U – напряжение между заземлением и потенциальным штырем, а I – сила тока в контуре, образованном заземлением, токовым штырем, трансформатором и амперметром.

Общая проблема классических методов измерения сопротивления заземления - влияние блуждающих токов в почве.

Метод амперметра-вольтметра на практике имеет две разновидности: трёхпроводный и четырёхпроводный методы, о которых и пойдет далее речь.

Трёхпроводный метод

Обозначим клеммы для измерения напряжения как П1 и П2, а клеммы для измерения тока — как T1 и T2. В реально существующих измерительных приборах эти клеммы могут иметь иные обозначения.

 

Схема измерений четырёхпроводным методом

Схема измерения трёхпроводным методом

При трёхпроводном методе клеммы П1 и T1 соединяются перемычкой и подключаются одним проводом к исследуемому заземлению. Клемма П2 соединяется проводом с потенциальным штырем, а клемма Т2 — с токовым штырем.

Преимуществом трёхпроводного метода является меньшее количество проводов. Недостатком — сильное влияние сопротивления провода, идущего к заземлению, на результаты измерения. Поэтому, обычно, трёхпроводный метод применяется для измерения сопротивления заземления, значение которого заведомо выше 5 Ом.

Четырёхпроводный метод

Когда к точности измерений предъявляются более высокие требования, используется четырёхпроводный метод. При нем к исследуемому заземлению идут раздельные провода от клемм П1 и T1, которые соединяются только непосредственно на клеммах заземления.

Схема измерения трёхпроводным методом

Схема измерений четырёхпроводным методом

Через провод, который идет к T1, течет ток. Образующаяся при этом разность напряжений на концах провода вносит погрешность в измерения, характерные для трёхпроводного метода. Но при четырёхпроводном методе точка измерения напряжения (на клеммах заземления) соединена с измерительным прибором отдельным проводом. По этому проводу течет пренебрежимо малый ток (не более единиц миллиампер), так что его сопротивление практически не вносит погрешности в измерения.

Повышение точности измерений

Классический способ измерения сопротивления заземления чувствителен к неравномерности свойств почвы в разных местах. Поэтому для повышения точности измерения рекомендуется несколько раз поменять расположение потенциального штыря с шагом, примерно равным 10% от его номинального расстояния до заземления. Разброс измеренных значений не должен быть больше 5%. Если он больше, то расстояние между исследуемым заземлением и штырями увеличивают в 1,5 раза или меняют направление линии, по которой расставлены штыри.

Выбор измерителя сопротивления заземления

До сих пор в литературе для классического метода измерения сопротивления рекомендуются приборы еще советской разработки. Но они уже не соответствуют современным реалиям, ведь электрооборудования в наших домах с тех пор стало намного больше. Появились новые устройства (например, базовые станции мобильной связи), предъявляющие особые требования к заземлению. Поэтому есть смысл обратиться к продукции ведущих мировых брендов. Но и здесь не все так просто — цены зачастую «кусаются», да и могут быть расхождения в отечественных и зарубежных нормах.

Оптимальным вариантом представляется измерительная аппаратура, выпущенная в Китае на основе самых современных технологий, но по спецификациям и под локальным брендом российской компании. Например, ЖГ-4300 (аббревиатура расшифровывается как «Железный Гарри»). Это устройство позволяет измерять сопротивление заземления в пределах от 0,05 Ом до 20,9 кОм. Доступно измерение по двух- трёх- и четырёхпроводному методам. Напряжение на клеммах не превышает 10 В, что позволяет проводить измерения с высоким уровнем электробезопасности. Прибор не просто соответствует российским нормам, он включен в Государственный реестр средств измерений. При этом цена раза в 3 ниже, чем у аналогов от известных зарубежных брендов.

Другие способы измерений

Более простым в использовании, но при этом менее точным является двухпроводный метод измерения сопротивления заземления. Он позволяет быстро получить оценку сопротивления, что бывает ценным, например, при проведении ремонтных работ. Об этом методе рассказывается в отдельной статье.

Дальнейшим развитием классического метода измерения стал так называемый компенсационный метод. Он позволяет чисто аналоговыми способами отстроиться от помех, вызванных блуждающими токами. Недостатком данного метода является сложность настройки прибора и более высокие требования к квалификации оператора, поэтому большой популярности он не завоевал.

Также существует семейство безэлектродных методов измерения, позволяющих не отключать заземление от электроустановки. Они основаны на использовании токовых клещей. Метод, основанный на применении двух клещей также относится к рекомендованным ГОСТ Р 50571.16-2007. Недостатком такого метода является то, что он может напрямую применяться только в системах ТТ и системах TN с ячеистым заземлением. Для обычных систем TN потребуется кратковременная установка перемычки между нейтралью и заземлением, что потенциально представляет угрозу электробезопасности, так что питание во всем здании, где установлено заземление, придется на время измерений отключить.

Выводы

И в цифровую эпоху классический метод вольтметра-амперметра является основным для измерения сопротивления заземлений. Накоплен большой опыт его применения, поэтому его можно считать надежным. Цифровые технологии позволяют мгновенно вычислить значение сопротивления и сразу увидеть результат на дисплее измерительного прибора. Кроме этого, с помощью современных технологий удается в значительной степени подавлять помехи при измерениях. Благодаря этому точность измерений может быть доведена до 1 — 2%, что позволяет классическим методам успешно конкурировать с методами, основанными на использовании токовых клещей, погрешность у которых заметно выше.

Поделитесь этой страницей с друзьями и коллегами

 

Последние новости

24.10.2024

Сигнальные шары-маркеры (СШМ) играют важную роль в обеспечении безопасности воздушных линий электропередач (ЛЭП). Их основная задача — визуально обозначать линии для летательных аппаратов и других объектов, предотвращая аварии. Однако, не все сигнальные шары одинаково надежны и долговечны. Ключевую роль здесь играет материал, из которого они изготовлены.

23.10.2024

До конца года объявляем грандиозную распродажу на весь складской запас муфт холодной усадки, изоляционных материалов и огнезащитных материалов бренда ИМАГ. Сэкономьте до 25% при покупке!

23.08.2024

Тестеры АКБ Kongter BT-301, BT-302 и BT-3915 внесены в государственный реестр средств измерений Российской Федерации (регистрационный номер 92906-24).

28.06.2024

Для практического использования аккумуляторов имеют значение те измерения, которые были проведены под нагрузкой. Подключить к источнику питания конкретный прибор — не выход, поскольку параметры этого прибора в общем случае не калиброваны.

16.05.2024

В целях повышения квалификации работников промышленных предприятий в области монтажа электротехнического оборудования ЧОУ ДПО "ТУЛЬСКИЙ УЧЕБНЫЙ ЦЕНТР "ЭНЕРГЕТИК" провел соревнования по установке муфт холодной усадки.

21.02.2024

В этот раздел включены некоторые часто задаваемые вопросы (FAQ), которые обычно возникают у пользователей при выборе и эксплуатации нагрузочных блоков Kongter K-900. Эта информация поможет ближе познакомиться с нагрузочными блоками постоянного тока и более эффективно использовать оборудование для тестирования АКБ.  

15.02.2024

Комплекты муфт холодной усадки ИМАГ для одножильных и трехжильных кабелей со сплошной изоляцией на напряжение до 35 кВ успешно прошли испытания и получили сертификат соответствия требованиям ГОСТ 34839-2022.

31.01.2024

Обучение по установке муфт холодной усадки ИМАГтм на 6/10 кВ в компании ООО "Газпромнефть Энергосистемы" подразделения Приобскнефть.

28.12.2023

Плотность энергопотребления в современных мегаполисах постоянно растет. Поэтому сейчас активно внедряются кабельные распределительные сети на напряжение 20 кВ. Стоимость сети на 20 кВ (включая оборудование) всего на 25% выше, чем у сети 10 кВ. Но зато на одной и той же площади при равном суммарном энергопотреблении требуется вдвое меньше подстанций на 20 кВ, чем на 10 кВ, что с лихвой окупает расходы. 

12.12.2023

Современной тенденцией является использование в распределительных сетях водо- и газоснабжения трубопроводов, изготовленных из пластмассы. Они легче, проще в монтаже и не повержены коррозии. К недостаткам можно отнести сложность обнаружения такой трубы, проложенной под землей.