Измерение показателей качества электроэнергии в действующей распределительной сети

По материалам статьи “Power quality indices measurement in real distribution network”.
Автор: Велимир Стругар, дипломированный инженер, магистр электроинженерии,
Черногорское электрическое предприятие,
Отдел по распределению электроэнергии

Измерение качества электроэнергии

В статье представлена информация о влиянии различных устройств, эксплуатируемых в распределительной системе Черногорского электрического предприятия, а точнее, распределительной сети в городе Тивате. Измерения в Тивате проводились более года (с 16 апреля 2004 года по конец июля 2005 года). 

Быстрая навигация по статье:

1. Введение
2. Что такое качество электроэнергии?
 2.1. Происхождение высших гармоник в электрической сети
  2.1.1. Источники гармонических возмущений
  2.1.2. Влияние на оборудование заказчиков
3. Методы измерения качества электроэнергии
4. Результаты по контрольной точке "высоковольтная линия "Лепетан" 10 кВ"
5. Результаты по контрольной точке ТС 10/04 кВ «Селяново Б»
6. Результаты по контрольной точке ТС 10/04 кВ «Селяново СИЗ»
7. Результаты по контрольной точке ТС 10/04 кВ «Плавда»
8. Имитационная модель
9. Оборудование для анализа качества электроэнергии
10. Заключение

Введение

В этой статье мы проанализировали некоторые контрольные точки в распределительной сети города Тиват в Республике Черногория. Здесь также представлены результаты анализа данных точек.
Для начала, мы можем посмотреть результаты для контрольной точки под названием высоковольтная линия "Лепетан" 10 кВ. Процесс измерения охватывал вторичные токи и напряжения измерительных трансформаторов тока и напряжения, эти значения записывались и анализировались. Результаты измерений были обработаны и представлены в MS Excel.

В данном случае использовалось следующее измерительное оборудование: ручной анализатор "FLUKE 430" и устройство для непрерывной записи измерительных данных "Анализатор качества электроэнергии MI 2192".
После проведения измерений, когда благодаря им проблема была подтверждена, водопроводно-канализационной организации пришлось принять меры, так как именно она является главным виновником того, что результаты не соответствуют требованиям.

Полученные результаты измерений иногда превышали предел предусмотренный стандартами (EN 50160). Превышение возникало, когда запускали насосы. 
Фактические данные легли в основу разработки имитационной модели. Полученную модель использовали для разработки фильтра для подавления паразитных гармоник в электрических сетях. Представлены результаты применения фильтра. К счастью, водопроводно-канализационная организация установила у себя пассивный фильтр для компенсации соответствующих гармоник.

Что такое качество электроэнергии?

Существует множество определений качества электроэнергии, в зависимости от точки зрения человека. Простое определение, принятое среди большинства клиентов - качество электроэнергии хорошее, если приборы, подключенные к электросети, работают удовлетворительно. Как правило, плохое или низкое качество поставляемой электроэнергии проявляется в необходимости несколько раз перезагружать компьютер, чувствительные устройства блокируются, свет мигает, электронные приводы и контрольно-измерительное оборудование работают неправильно. С другой стороны, для электроэнергетических компаний энергосистем общего назначения качество электроэнергии определяется параметрами напряжения, которые влияют на чувствительное оборудование.

Другое определение качества электроэнергии основывается на принципе ЭМС и является следующим: термин «качество электроэнергии» относится к широкому спектру электромагнитных явлений, которые характеризуют напряжение и ток в определенный момент времени в определенной точке энергосистемы (IEEE 1159:1995 «Методические указания IEEE для мониторинга качества электроэнергии»).

МЭК 61000-4-30 «Методы испытаний и измерений - методы измерения качества электроэнергии» (при подготовке) определяют качество электроэнергии как "характеристики электричества в определенной точке электрической системы, в сравнении с набором контрольных технических параметров".
Мы можем описать уровень качества электроэнергии значениями коэффициента нелинейных искажений THDU, THDI и других параметров, основанных на высших гармониках напряжения и токов.

Происхождение высших гармоник в электрической сети

На рисунке 1 объясняется принцип образования гармоник в электрических сетях. С позиции пользователя, сеть энергоснабжения можно представить ​​как генератор G и расчетное полное сопротивление Xs. Напряжение генератора считается чистым синусоидальным напряжением с номинальным среднеквадратичным значением.

Напряжение в точках подключения потребителей отличается от напряжения генератора из-за падения напряжения на расчетном полном сопротивлении. В случае линейной нагрузки (в этом примере используется резистор, но данный пример подходит для любой комбинации RLC) текущее и последующее падение напряжения также будет синусоидальным. Накапливаемое в точках подключения напряжение будет чисто синусоидальным с пониженной амплитудой и фазовым сдвигом на напряжение генератора.

Принцип образования гармоник в электрических сетях
Рисунок 1. Принцип образования гармоник в электрических сетях

Нелинейные нагрузки (выпрямители тока, частотно-регулируемые приводы, люминесцентные лампы, ПК, ТВ...) потребляют ток с высоким коэффициентом THDI (несинусоидальная форма волны). В аналитических целях, нелинейные нагрузки можно смоделировать с линейными нагрузками и источником гармоник (тока). Гармоники тока вызывают несинусоидальное падение напряжения на расчетном полном сопротивлении и искаженное напряжение на клеммах питания. Нелинейные нагрузки искажают питающее напряжение таким образом, что с помощью измерительного прибора можно обнаружить только нечетные гармоники. Если нагрузка контролируется несимметрично, положительные и отрицательные полупериоды тока различаются по форме и среднеквадратичному значению, в результате чего появляются четные гармоники и постоянные составляющие тока. Данная ситуация приводит к насыщению и перегреву магнитных систем трансформаторов. В некоторых регионах, значительные постоянные составляющие тока могут появляться в результате геомагнитных бурь.

Другим источником гармоник является сама сеть энергоснабжения. Намагничивание магнитной системы трансформатора и ее насыщение вызывают несинусоидальные токи, которые проявляются как коэффициент нелинейных искажений THDU на клеммах питания. На рисунке 2 показано, как распространяется гармоническое возмущение. Форма сигнала напряжения в конкретной точке измерения искажается под влиянием тока, создаваемого всеми генераторами помех (преобразователями частоты, сварочными аппаратами, ПК, силовыми трансформаторами...) в системе.

Распространение гармонического возмущения
Рисунок 2. Распространение гармонического возмущения

Источники гармоник:

  • однофазные выпрямители - 3-я гармоника, THDI 80%;
  • трехфазные нагрузки - 5-я, 7-я, 11-я, 13-я, 17-я гармоника;
  • несимметрично-контролируемое питание - четные гармоники и постоянный ток;
  • число импульсов выше - коэффициент THDI ниже;
  • последовательная индуктивность снижает коэффициент THDI;
  • низковольтная сеть питания - коэффициент THDU 1,5 ÷ 4,5%, в основном, 5-я гармоника.

Влияние на оборудование заказчиков:

  • снижается общая энергоэффективность;
  • преждевременный износ компонентов системы;
  • тройные гармоники могут создавать сильный ток в нейтральной линии, что приводит к перегреву и потерям;
  • повышенный нагрев, шум и вибрации в трансформаторах и двигателях;
  • ток в батарее конденсаторов увеличивается с порядком гармоники, вызывая сбои;
  • наличие гармоники увеличивает вероятность резонанса;
  • проблемы с частотами подачи сигналов;
  • автоматическое отключение предохранительных устройств;
  • если коэффициент THDU поднимается выше 8%, частота отказов электронных приводов и выключателей повышается.

Методы измерения качества электроэнергии

Методы измерения качества электроэнергии основаны на цифровой обработке входных сигналов. Каждый входной сигнал (3 напряжения и 3 тока) отбирается 128 раз в каждом входном цикле. Продолжительность данного входного цикла зависит от частоты на входе синхронизации (один из трех вводов напряжения или токовый ввод). При 50 Гц период входного цикла составляет 20 мсек. Основные измеренные значения рассчитываются в конце каждого периода выборки, результаты отображаются на дисплее или записываются. Результаты, основанные на быстром преобразовании Фурье (БПФ), рассчитываются только каждый 8 -й входной цикл (каждые 160 мсек, 50 ​​Гц). Для вычисления данных величин используются следующие уравнения.

Таблица 1. Основные расчеты
Основные расчеты

Таблица 2. Дополнительные расчеты (с использованием основных значений)
Дополнительные расчеты (с использованием основных значений)

Таблица 3. Дополнительные расчеты (с использованием БПФ)
Дополнительные расчеты (с использованием БПФ)

Таблица 4. Общие значения
Общие значения

В 3ϕ системах с обычным 3-проводным соединением, следующие значения недоступны для отображения и записи:

  • ток в нулевом проводнике;
  • фазовый угол напряжения-тока;
  • фазовый коэффициент мощности.

Измерения резких перепадов напряжения: согласно МЭК / 61000-4-15.

Результаты по контрольной точке "высоковольтная линия "Лепетан" 10 кВ"

Высоковольтная линия 10 кВ «Лепетан» подает электроэнергию с нескольких трансформаторных подстанций 10/04 кВ на очень разные нагрузки: агротехнические комплексы, административные здания, многоквартирные дома, школы, детские сады, супермаркеты, склады, водопроводно-канализационная организация, казармы и др. На одной из трансформаторных станций 10/04 кВ была обнаружена проблема с качеством электроэнергии, поскольку у одного из потребителей форма кривой тока была очень нелинейной. Это трансформаторная станция 10 /0,4 кВ под названием «Plavda». Нелинейным потребителем является водопроводная станция, оборудованная насосом с мощными асинхронными двигателями. Конкретно этот замер в контрольной точке высоковольтной линии 10 кВ «Лепетан» проводился с марта по июль 2005 года. На рисунке 4 приведено расположение трансформаторной подстанции рассматриваемой высоковольтной линии.

Расположение трансформаторной станции высоковольтной линии 10 кВ «Лепетан»
Рисунок 4. Расположение трансформаторной станции высоковольтной линии 10 кВ «Лепетан»

Общая длина высоковольтной линии «Лепетан» составляет около 1,4 км. На следующих рисунках представлены диаграммы форм сигналов напряжений и токов и гармонические спектры.

Форма сигнала напряжения высоковольтной линии 10 кВ «Лепетан»
Рисунок 5. Форма сигнала напряжения высоковольтной линии 10 кВ «Лепетан»

Гармонический спектр напряжений высоковольтной линии 10 кВ «Лепетан»
Рисунок 6. Гармонический спектр напряжений высоковольтной линии 10 кВ «Лепетан»

Форма кривой тока высоковольтной линии 10 кВ «Лепетан»
Рисунок 7. Форма кривой тока высоковольтной линии 10 кВ «Лепетан»

Таблица 5. Показатели качества электроэнергии высоковольтной линии 10 кВ «Лепетан»
Показатели качества электроэнергии высоковольтной линии 10 кВ «Лепетан»

На рисунке 6 представлен гармонический спектр напряжений с преобладанием 5-й и 7-й гармоник напряжения. Наибольшее влияние на коэффициент THDU, если рассматривать состояние качества электроэнергии в начале высоковольтной линии "Лепетан" (на электрической шине 10 кВ в ТС 35/10 кВ Тиват), оказывала 5-я гармоника напряжений. Главным виновником данного уровня 5-й гармоники была водопроводно-канализационная организация, подключенная к ТС 10/04 кВ «Plavda». Эта проблема была устранена после того, как местная водопроводно-канализационная компания в городе Тиват установила правильное оборудование для устранения гармоник высокого порядка в электрических сетях.

Таблица 6. Численные значения составляющих качества электроэнергии
Численные значения составляющих качества электроэнергии

Основной рабочей характеристикой высоковольтной линии "Лепетан" был плохой коэффициент мощности (таблица 5). Частота была в допустимых пределах. В таблице 6 представлены численные значения качества электроэнергии для напряжений и токов компонентов высоковольтной линии "Лепетан".

Результаты по контрольной точке ТС 10/04 кВ «Селяново Б»

Данная подстанция является первой на высоковольтной линии "Лепетан". Установленная мощность силового трансформатора составляет 630 кВА. Данная трансформаторная станция, в основном, снабжает электроэнергией частные подворья, несколько административных зданий, школу и детские ясли. А также, эта станция обеспечивает освещение общественных мест. Информация о зарегистрированных напряжениях представлены на следующем рисунке.

Изменение напряжений в контрольной точке ТС 10/04 кВ «Селяново Б»
Рисунок 8. Изменение напряжений в контрольной точке
ТС 10/04 кВ «Селяново Б»

Одна часть изменений коэффициента THDU представлена ​​на рисунке 9. Максимальное значение коэффициента THDU составило 7,53% и было зарегистрировано 6 июня 2005 г. в 20:07. Данное значение было абсолютно недопустимым.

Изменения коэффициента THDU в контрольной точке ТС 10/04 кВ «Селяново Б»
Рисунок 9. Изменения коэффициента THDU в контрольной точке
ТС 10/04 кВ «Селяново Б»

Изменения 5-й гармоники напряжений в контрольной точке ТС 10/04 кВ «Селяново Б»
Рисунок 10. Изменения 5-й гармоники напряжений в контрольной точке
ТС 10/04 кВ «Селяново Б»

Мы можем увидеть очевидное сходство на рисунках 9 и 10. В один и тот же момент, коэффициенты THDU и 5-й гармоники напряжений имеют максимальное значение. Ясно, что 5-я гармоника напряжения имеет доминирующее влияние на форму кривой коэффициента THDU. Значение 5-й гармоники напряжения (4,9%) превысило предельно допустимое (согласно государственным стандартам Венгрии и Австралии). Согласно IEEE-519, это значение незначительно ниже предельно допустимого.

Результаты по контрольной точке ТС 10/04 кВ «Селяново СИЗ»

Это вторая трансформаторная подстанция на высоковольтной линии "Лепетан". Установленная мощность силового трансформатора составляет 630 кВА. Данная трансформаторная подстанция снабжает электроэнергией, в основном, здания, несколько частных домов и освещение общественных мест. Зарегистрированные данные представлены на следующих рисунках.

Изменения коэффициента THDU в контрольной точке ТС 10/04 кВ «Селяново СИЗ»
Рисунок 11. Изменения коэффициента THDU в контрольной точке
ТС 10/04 кВ «Селяново СИЗ»

Изменения 5-й гармоники напряжений в контрольной точке ТС 10/04 кВ «Селяново СИЗ»
Рисунок 12. Изменения 5-й гармоники напряжений в контрольной точке
ТС 10/04 кВ «Селяново СИЗ»

И вновь, мы видим очевидное сходство между коэффициентом THDU и формой кривой 5-й гармоники напряжений.

Результаты по контрольной точке ТС 10/04 кВ «Plavda»

Данная трансформаторная подстанция снабжает электроэнергией несколько частных подворий рядом с водопроводно-канализационной организацией в Тивате. Установленная мощность силового трансформатора составляет 1000 кВА. Зарегистрированные данные представлены на следующих рисунках.

Изменения напряжений в точке ТС
Рисунок 13. Изменения напряжений в точке ТС "Plavda"

Изменения коэффициента THDU в точке ТС
Рисунок 14. Изменения коэффициента THDU в точке ТС "Plavda"

Изменения 3-й гармоники напряжений в контрольной точке ТС 10/04 кВ «Plavda»
Рисунок 15. Изменения 3-й гармоники напряжений в контрольной точке
ТС 10/04 кВ «Plavda»

Изменения 5-й гармоники напряжений в контрольной точке ТС 10/04 кВ «Plavda»
Рисунок 16. Изменения 5-й гармоники напряжений в контрольной точке
ТС 10/04 кВ «Plavda»

В данном случае, доминирующее влияние на форму кривой коэффициента THDU имеет 3-я гармоника напряжения (рисунок 15). Наибольшее значение 3-й гармоники напряжения бывает рано утром (4,03%). У водопроводно-канализационной организации имеются несколько небольших однофазных асинхронных двигателя и два трехфазных асинхронных двигателя с частотной регулировкой.

Имитационная модель

Имитационная модель была разработана в специальном программном обеспечении - SuperHarm®. Было достигнуто надлежащее соответствие между результатами измерений и результатами моделирования. Моделирование проводилось для двух эксплуатационных условий - низкой и высокой нагрузки. А также, рассматривалось использование пассивного фильтра.

На рисунках 17 и 18 показан спектр гармоник тока до и после подключения фильтра для 7-й гармоники. Достигнуто достаточное снижение искажения тока и напряжения. Фильтр размещался в точке измерения на уровне напряжения 10 кВ. Самые высокие значения коэффициентов THDU и THDI отмечены в период низкой ежедневной нагрузки, поэтому данный режим представлен на верхних рисунках. Ситуация стала лучше после установки фильтра в режиме высокой нагрузки. Улучшение качества напряжения видно на рисунках 19 и 20, а также представлено в таблице 1. Примечательно, что 7-я гармоника, значения коэффициентов THDU и THDI уменьшаются после установки фильтра (нижняя часть таблицы 7).

Спектр гармоник тока до установки фильтра в точке измерения
Рисунок 17. Спектр гармоник тока до установки фильтра в точке измерения

Спектр гармоники тока после установки фильтра в точке измерения
Рисунок 18. Спектр гармоники тока после установки фильтра в точке измерения

Спектр гармоник напряжения до установки фильтра в точке измерения
Рисунок 19. Спектр гармоник напряжения до установки фильтра в точке измерения

Гармонический спектр напряжения после установки фильтра в точке измерения
Рисунок 20. Гармонический спектр напряжения после установки фильтра в точке измерения

Таблица 7. Коэффициенты THDI и THDU в точке измерения до и после установки фильтра - режим низкой нагрузки

TS 10/0.4kV Harmonic Current Phase A & C Low Load

Name

Freq

Fund

% THD

H3

H5

H7

BUS0.4.A

50

20.0003

10.5573

0.38219

0.77426

1.92686

BUS0.4.C

50

20.9483

7.26388

0.466255

1.02319

1.02525

TS 10/0.4kV Harmonic Current Phase A & C Low Load Filter Applied

Name

Freq

Fund

% THD

H3

H5

H7

BUS0.4.A

50

19.7251

6.30617

0.398267

0.953288

0.692753

BUS0.4.C

50

21.2563

6.58458

0.485869

1.25978

0.368601

 

Voltage Harmonic Content Phase A & C Low Power

Name

Freq

Fund

% THD

H3

H5

H7

BUS0.4.A

50

19713.6

2.9338

77.4364

195.141

538.906

BUS0.4.C

50

20067.3

2.85104

85.0342

276.725

493.481

Voltage Harmonic Content Phase A & C Low Power

Name

Freq

Fund

% THD

H3

H5

H7

BUS0.4.A

50

19987.4

1.22174

34.492

83.1519

226.994

BUS0.4.C

50

20145.8

1.26372

37.8745

122.594

219.887

Приборы для измерения качества электроэнергии

Для диагностики, оценки качества электроэнергии, прогнозирования и устранения проблем в сети электропитания используются анализаторы Fluke 430 серии II (Series II).

Анализаторы качества электроэнергии Fluke 434-II, 435-II и 437-II
Рисунок 21. Анализаторы качества электроэнергии Fluke 434-II, 435-II и 437-II

Благодаря запатентованной технологии анализаторы Fluke 434, 435 и 437 серии II, рассчитывая дисбаланс и мощности гармоник, определяют истинные потери электроэнергии, а уникальный алгоритм Fluke показывает их в денежном выражении.Модели различаются по функционалу, области применения и задачам и ориентированы на специалистов разного уровня подготовки:

  • Fluke 434-II ориентирован на пользователей с базовыми знаниями в области оценки качества электроэнергии. Прибор определяет базовые значения параметров качества электроэнергии: напряжение, сила тока, частота, мощность, провалы, выбросы, гармоники, нарушение баланса;
  • Fluke 435-II обладает аналогичными с Fluke 434-II функциями, но ориентирован для более опытных пользователей в области оценки качества электроэнергии. Модель обладает функцией PowerWave, которая осуществляет высокоскоростной сбор данных по среднеквадратичным значениям, показывает полупериод и форму сигнала, характеризующие динамику электросистем и с высокой детализацией отображаются на экране. Это позволяет увидеть какое сочетание вызывает потенциальные проблемы;
  • Fluke 437-II — идеальное решение для специалистов области ВПК, авиации и промышленности, а также в других областях, связанных с транспортировкой. В модели 437-II которой присутствуют все функции модели 435-II, включая PowerWave, но также присутствует возможность проведения измерений на частоте до 400 Гц.

Подробнее об анализаторах качества электроэнергии Fluke 430 серии II читайте на отдельной странице.

Идеальным прибором для анализа работы электродвигателей является портативный анализатор Fluke 438-II. Он упрощает выполнение работ по обнаружению, прогнозированию, предотвращению и устранению проблем качества электроэнергии в трехфазных и однофазных электрораспределительных системах, предоставляя техническим специалистам информацию о механических и электрических параметрах, необходимую для эффективной оценки работы электродвигателя.

Анализатор качества электроэнергии и работы электродвигателей Fluke 438-II
Рисунок 22. Анализатор качества электроэнергии и работы электродвигателей Fluke 438-II. Подробнее читайте здесь.

Заключение

При доминирующей нагрузке, такой как эта промышленная установка, качество электроэнергии усугубляется на шинах муфтовых соединений высоковольтных линий. В данной ситуации, потребитель из одной распределительной системы отрицательно влияет на соседнюю распределительную систему. Возникают вопросы, кто и каким образом должен на это реагировать. Такие негативные воздействия, отмеченные в пункте А, также влияют и на самого потребителя, что приводит к частым производственным неполадкам и увеличению производственных расходов. Прежде чем направлять претензию компании - поставщику электроэнергии, данный тип потребителей должен проверить динамические характеристики их собственных электрических устройств. Для них важно определить, оказывает ли какое-либо устройство негативное влияние на другие устройства. И только после этого, претензия компании - поставщику электроэнергии будет иметь свои основания. Это особенно важно в случае приватизации промышленных потребителей в нашей стране.

Проблема может быть решена путем установки фильтров в нужных местах. Моделирование показало, что подключение фильтра приводит к значительному снижению гармонических искажений.

Следующим открытым вопросом является возмещение убытков потребителям одной сетевой компании если данные убытки возникли из-за другого потребителя другой сетевой компании. Компания, поставляющая электроэнергию должна разработать соответствующие правила, определяющие условия для подключения нелинейных потребителей. При переходе на нерегулируемый рынок, ясно, что поставщик отвечает за качество электроэнергии. В этом смысле, крупнейших потребителей, которые, в значительной степени, являются источником нелинейной нагрузки, необходимо обязать снижать уровень гармонических искажений в точках общего подключения.

Если вам нужна профессиональная консультация по вопросам анализа качества электроэнергии, просто отправьте нам сообщение!

Поделитесь этой страницей с друзьями и коллегами

Смотрите также:

 

Последние новости

21.02.2024

В этот раздел включены некоторые часто задаваемые вопросы (FAQ), которые обычно возникают у пользователей при выборе и эксплуатации нагрузочных блоков Kongter K-900. Эта информация поможет ближе познакомиться с нагрузочными блоками постоянного тока и более эффективно использовать оборудование для тестирования АКБ.  

15.02.2024

Комплекты муфт холодной усадки ИМАГ для одножильных и трехжильных кабелей со сплошной изоляцией на напряжение до 35 кВ успешно прошли испытания и получили сертификат соответствия требованиям ГОСТ 34839-2022.

31.01.2024

Обучение по установке муфт холодной усадки ИМАГтм на 6/10 кВ в компании ООО "Газпромнефть Энергосистемы" подразделения Приобскнефть.

28.12.2023

Плотность энергопотребления в современных мегаполисах постоянно растет. Поэтому сейчас активно внедряются кабельные распределительные сети на напряжение 20 кВ. Стоимость сети на 20 кВ (включая оборудование) всего на 25% выше, чем у сети 10 кВ. Но зато на одной и той же площади при равном суммарном энергопотреблении требуется вдвое меньше подстанций на 20 кВ, чем на 10 кВ, что с лихвой окупает расходы. 

12.12.2023

Современной тенденцией является использование в распределительных сетях водо- и газоснабжения трубопроводов, изготовленных из пластмассы. Они легче, проще в монтаже и не повержены коррозии. К недостаткам можно отнести сложность обнаружения такой трубы, проложенной под землей.

12.12.2023

Наша компания открывает предзаказ на новую линейку муфт холодной усадки, разработанную специально для 4- и 5-жильных линий на напряжение от 0,4 до 6 кВ.

06.10.2023

С 3 по 6 октября специалисты проекта test-energy.ru приняли участие в "Совете главных энергетиков нефтеперерабатывающих и нефтехимических предприятий России и стран СНГ"

02.10.2023

Представляем новинку - инфракрасные окна (ИК-окна) российского производителя КЭИ, превосходящие по характеристикам аналогичные решения Fluke. Лучший вариант на рынке для реализации программы импортозамещения!

28.09.2023

Объявляем распродажу оригинальных ремонтных комплектов для кабеля производства 3М со скидками до 42%. Комплекты позволяет выполнять ремонт на месте эксплуатации кабеля без вывоза в ремонтный цех.

18.08.2023

Основная задача блока нагрузки постоянного тока - тестирование различных источников электропитания: АКБ, блоков питания, преобразователей напряжения, регуляторов и стабилизаторов напряжения, солнечных батарей, генераторов и других устройств. Нагрузочный блок является, по сути, программируемой (динамической) нагрузкой.