Испытание кабелей повышенным напряжением: правила, технологии, оборудование

При эксплуатации кабельных линий электропередач большой проблемой является пробой изоляции там, где это невозможно определить ни визуальным осмотром, ни применением низковольтного мегаомметра. Наглядный пример — образование микротрещин в изоляции кабеля, которые заполняются влагой. Когда такие трещины не доходят от внешней поверхности кабеля до токопроводящей жилы, мегаомметр не может определить их наличие. В то же время, между трещиной, заполненной влагой, и токопроводящей жилой есть тонкий слой изоляции. При подаче рабочего напряжения этот тонкий слой изоляции не выдерживает и происходит пробой.

Поэтому кабели тестируют под напряжением выше номинального, что позволяет выявить скрытые дефекты. Правила испытаний описаны в действующем ПУЭ-7.

Для кабелей на напряжение, не превышающее 1 кВ, применяется только измерение сопротивления изоляции высоковольтным (на 2,5 кВ) мегаомметром. При этом оно не должно быть меньше 0,5 МОм. Исключение составляют лишь кабели на 1 кВ с пластмассовой изоляцией — они испытываются повышенным напряжением (см. табл. № 1).

Для кабелей на напряжение свыше 1 кВ используется испытание повышенным напряжением выпрямленного тока (использование в ПУЭ-7 термина «выпрямленного тока» связано с тем, что на практике применяются выпрямители без фильтров, то есть на выходе у них есть пульсации) согласно табл. № 1. Для кабелей в бумажной и пластмассовой изоляцией до 35 кВ длительность испытания составляет 10 мин., для кабелей с резиновой изоляцией на 3 – 10 кВ — 5 мин, для кабелей с любым типом изоляции на 110 – 500 кВ — 15 мин.

Таблица № 1. Испытательные напряжения выпрямленного тока для различных типов силовых кабелей

Кабели с бумажной изоляцией на напряжение, кВ

2

3

6

10

20

35

110

150

220

330

500

12

18

36

60

100

175

285

347

510

670

865

Кабели с пластмассовой изоляцией на напряжение, кВ

Кабели с резиновой изоляцией на напряжение, кВ

1

3

6

10

110

3

6

10

5

15

36

60

285

6

12

20

 

Если речь идет о кабеле в пластмассовой изоляции, не имеющем брони и расположенном на открытом пространстве, то его испытывать выпрямленным напряжением не требуется.

Кабели на 110 – 500 кВ с изоляцией любого типа, можно испытывать не только выпрямленным, но и переменным напряжением частотой 50 Гц. В таком случае эффективное значение напряжения должно составлять 1,73 от указанного в документации для данного кабеля номинального значения напряжения.
Сопротивления изоляции кабеля нужно измерять специальным мегаомметром, который дает разницу потенциалов на измерительных клеммах, равную 2,5 кВ. Измерения делаются до и после испытаний на пробой, по ним делаются выводы о состоянии изоляции. Но как трактовать результаты измерений, если для кабелей на напряжение свыше 1 кВ в ПУЭ-7 не нормируется значение сопротивления изоляции? Есть два варианта. Первый — следует или ориентироваться на характеристики, заявленные производителем кабеля. Если же таковых нет, то переходим ко второму варианту. Нужно воспользоваться эмпирическим правилом — данное сопротивление должно быть не менее 10 МОм.

Для кабелей на напряжение от 6 до 35 кВ нормируются ток утечки. Кроме этого, может нормироваться асимметрия токов утечки для нескольких жил в кабеле (отношение между минимальной и максимальной утечками тока). При испытаниях на наличие дефектов в изоляции важно не столько абсолютное значение тока утечки, сколько динамика его изменения за время испытаний. Если изоляция исправна, то ток должен быть стабильным, обнаруживая небольшую тенденцию к снижению. Возможно в самом начале возникновение всплеска тока утечки, который, на самом деле, связан с зарядом паразитной емкости кабеля. Если во время испытаний ток увеличивается, то это свидетельствует о возможном наличии дефектов изоляции. При колебаниях значения тока время испытаний увеличивают до момента, когда направление изменения тока стабилизируется и станет ясна ситуация с состоянием изоляции, но не более 15 минут. Нормы ПУЭ-7 по токам утечки и коэффициенту асимметрии приведены в табл. №2.

Таблица № 2. Токи утечки и коэффициенты асимметрии для силовых кабелей

Кабель напряжением, кВ

Испытательное напряжение, кВ

Допустимое значение тока утечки, не более, мА

Допустимое значение коэффициента асимметрии (Imax/Imin), не более

6

36

0,2

8

10

60

0,5

8

20

100

1,5

10

35

175

2,5

10

 

Испытание кабелей с изоляцией из сшитого полиэтилена

Для кабелей с пластмассовой изоляцией на 110 – 500 кВ в качестве изоляции для таких кабелей применяется сшитый полиэтилен. Основной проблемой при испытании кабелей с изоляцией из сшитого полиэтилена выпрямленным током является накопление объемного заряда в толще материала изоляции, что снижает срок службы кабелей. В США, где с такой проблемой столкнулись раньше, чем в нашей стране, уже действует стандарт IEEE400.2 – 2013, рекомендующий проводить испытания кабелей с изоляцией из сшитого полиэтилена напряжением синусоидальной или квазисинусоидальной формы очень низкой частоты (VLF – Very Low Frequency) — менее 1 Гц. На практике используются частоты от 0,01 до 0,1 Гц. При этом время испытания может достигать 60 мин. Наличие функции VLF является важным преимуществом применяемого для тестирования оборудования. И далее данная функция будет все более и более актуальной из-за все более широкого распространения кабелей с изоляцией из сшитого полиэтилена.

Указанная особенность, а также относительная новизна материала изоляции, являются основными причинами, почему в действующем ПУЭ для кабелей с пластмассовой изоляцией на 110 – 500 кВ параметры испытаний пока не нормируются. Следует пользоваться методиками испытаний, которые предлагает завод-изготовитель кабеля.

Примеры оборудования

 

Установки для испытания кабеля из сшитого полиэтилена (XLPE)

Установки для испытания кабеля из сшитого полиэтилена (XLPE)

Функция прожига

После того, как высоковольтные испытания показали наличие дефектов, определяют места повреждения изоляции. Приборы, обнаруживающие такие повреждения, способны точно указать место, если сопротивление между жилами кабеля составляет менее 1 кОм. Чтобы обеспечить такое сопротивление, применяется прожиг — изменение напряжения и тока, подаваемого на жилы кабеля по определенному алгоритму с целью полного разрушения изоляции жил в месте, где наличествует дефект. В идеале, после прожига, две жилы соединяются между собой металлическим «мостиком». Помимо специального оборудования, функция прожига присутствует в некоторых моделях приборов для испытания изоляции кабелей.

Примеры оборудования для испытания кабелей

Для тестирования силовых кабелей повышенным напряжением выпускается разнообразное оборудование. Приведем несколько наиболее характерных примеров.

Прибор для испытаний HPG 70 K

Прибор для испытаний HPG 70 K
Прибор для испытаний HPG 70 K

Установка для тестирования кабелей напряжением от 0 до 70 кВ постоянного тока. При этом ток можно но изменять в пределах от 0 до 10 мА. В базовой комплектации Установка состоит из двух блоков: управления и индикации HSG 1 и высоковольтного блока HPG-70 K. В HSG 1 имеются аналоговые вольтметр и миллиамперметр, а также таймер на время до 60 мин. Для проверки кабелей с изоляцией из сшитого полиэтилена по методу VLF добавляется третий блок. Он позволяет тестировать кабели под напряжением 36 или 52 кВ на частоте 0,1 Гц.

Прибор для прожига BT 5000-1

Прибор для прожига BT 5000-1 , 14 кВ DC, макс. 110 A
Прибор для прожига BT 5000-1 , 14 кВ DC, макс. 110 A

В зависимости от модификации, данная установка, состоящая из четырех блоков, способна проверять кабели напряжением постоянного тока до 14 кВ и максимальным током 8 – 17 мА, а также осуществлять прожиг изоляции на напряжении 14 кВ с током до 110 мА. Некоторые модификации имеют также функцию VLF тестирования кабелей переменным напряжением 54 кВ с частотой 0,1 Гц. Автоматический разряд емкости тестируемого кабеля после подачи на него высокого напряжения обеспечивает повышенный уровень безопасности персонала и оборудования.

Установка HV Tester 25

HV Tester 25
Установка HV Tester 25

Благодаря наличию встроенного аккумулятора SebaKMT HV Tester 25 можно использовать в самых различных условиях.

Нередко испытание кабеля приходится осуществлять в условиях аварийной ситуации, когда электропитание в место проведения работ не поступает. В таком случае выручит устройство SebaKMT HV Tester 25, питающееся от встроенного аккумулятора. В том случае, если емкости встроенного аккумулятора, например, при длительных работах по устранению неисправностей, оказывается недостаточно, можно подключить прибор к автомобильному аккумулятору. При этом выходное напряжение постоянного тока будет ограничено величиной 25 кВ, а выходной ток — 1,5 мА. Это позволяет испытывать кабели с бумажной и пластмассовой изоляцией на напряжение не более 3 кВ, а с резиновой изоляцией — не более 10 кВ. В установке есть функция автоматического разряда емкости кабеля. Прибор выполнен в виде моноблока, что удобно при транспортировке.

Если вам нужна профессиональная консультация по испытанию кабелей повышенным напряжением, просто отправьте нам сообщение:

JChmKS5maW5kKCJpbnB1dFtuYW1lPWNvbmZpcm1dIikudmFsKCI5OTAiKS5hdHRyKCJjaGVja2VkIiwiY2hlY2tlZCIpLnByb3AoImNoZWNrZWQiLCJjaGVja2VkIik7CiQoZikuZmluZCgiaW5wdXRbbmFtZT11cmxdIikudmFsKGRvY3VtZW50LmxvY2F0aW9uKTsKbGV0IGgxID0gJCgiaDE6ZXEoMCkiKTsKbGV0IGgxX3R4dCA9IChoMS5sZW5ndGggPiAwKSA/IGgxLnRleHQoKSA6ICIiOwokKGYpLmZpbmQoImlucHV0W25hbWU9aDFdIikudmFsKGgxX3R4dCk7CiQoZikuZmluZCgiaW5wdXRbbmFtZT1hZ2VudF0iKS52YWwobmF2aWdhdG9yLnVzZXJBZ2VudCk7CiQoZikub24oIm1vdXNldXAga2V5dXAiLCAiaW5wdXQsIHRleHRhcmVhIiwgZnVuY3Rpb24oKXsKICAgICQoZikuZmluZCgiaW5wdXRbbmFtZT1lbWFnX3RlbGVwaG9uZV0iKS52YWwoIjE3MTQwMDk2NDY3NzAyZGFiNmE4M2EyY2ZhZGIyMDY5MzI5OGJhNGI2ZiIpOwp9KTs=
Телефон:
Email:
Подтверждение согласия на отправку данных:

* - Обязательное для заполнения
Поделитесь этой страницей с друзьями и коллегами

Смотрите также:

 

Последние новости

21.02.2024

В этот раздел включены некоторые часто задаваемые вопросы (FAQ), которые обычно возникают у пользователей при выборе и эксплуатации нагрузочных блоков Kongter K-900. Эта информация поможет ближе познакомиться с нагрузочными блоками постоянного тока и более эффективно использовать оборудование для тестирования АКБ.  

15.02.2024

Комплекты муфт холодной усадки ИМАГ для одножильных и трехжильных кабелей со сплошной изоляцией на напряжение до 35 кВ успешно прошли испытания и получили сертификат соответствия требованиям ГОСТ 34839-2022.

31.01.2024

Обучение по установке муфт холодной усадки ИМАГтм на 6/10 кВ в компании ООО "Газпромнефть Энергосистемы" подразделения Приобскнефть.

28.12.2023

Плотность энергопотребления в современных мегаполисах постоянно растет. Поэтому сейчас активно внедряются кабельные распределительные сети на напряжение 20 кВ. Стоимость сети на 20 кВ (включая оборудование) всего на 25% выше, чем у сети 10 кВ. Но зато на одной и той же площади при равном суммарном энергопотреблении требуется вдвое меньше подстанций на 20 кВ, чем на 10 кВ, что с лихвой окупает расходы. 

12.12.2023

Современной тенденцией является использование в распределительных сетях водо- и газоснабжения трубопроводов, изготовленных из пластмассы. Они легче, проще в монтаже и не повержены коррозии. К недостаткам можно отнести сложность обнаружения такой трубы, проложенной под землей.

12.12.2023

Наша компания открывает предзаказ на новую линейку муфт холодной усадки, разработанную специально для 4- и 5-жильных линий на напряжение от 0,4 до 6 кВ.

06.10.2023

С 3 по 6 октября специалисты проекта test-energy.ru приняли участие в "Совете главных энергетиков нефтеперерабатывающих и нефтехимических предприятий России и стран СНГ"

02.10.2023

Представляем новинку - инфракрасные окна (ИК-окна) российского производителя КЭИ, превосходящие по характеристикам аналогичные решения Fluke. Лучший вариант на рынке для реализации программы импортозамещения!

28.09.2023

Объявляем распродажу оригинальных ремонтных комплектов для кабеля производства 3М со скидками до 42%. Комплекты позволяет выполнять ремонт на месте эксплуатации кабеля без вывоза в ремонтный цех.

18.08.2023

Основная задача блока нагрузки постоянного тока - тестирование различных источников электропитания: АКБ, блоков питания, преобразователей напряжения, регуляторов и стабилизаторов напряжения, солнечных батарей, генераторов и других устройств. Нагрузочный блок является, по сути, программируемой (динамической) нагрузкой.